Memory-Efficient Models for Scene Text Recognition via Neural Architecture Search

SeulGi Hong

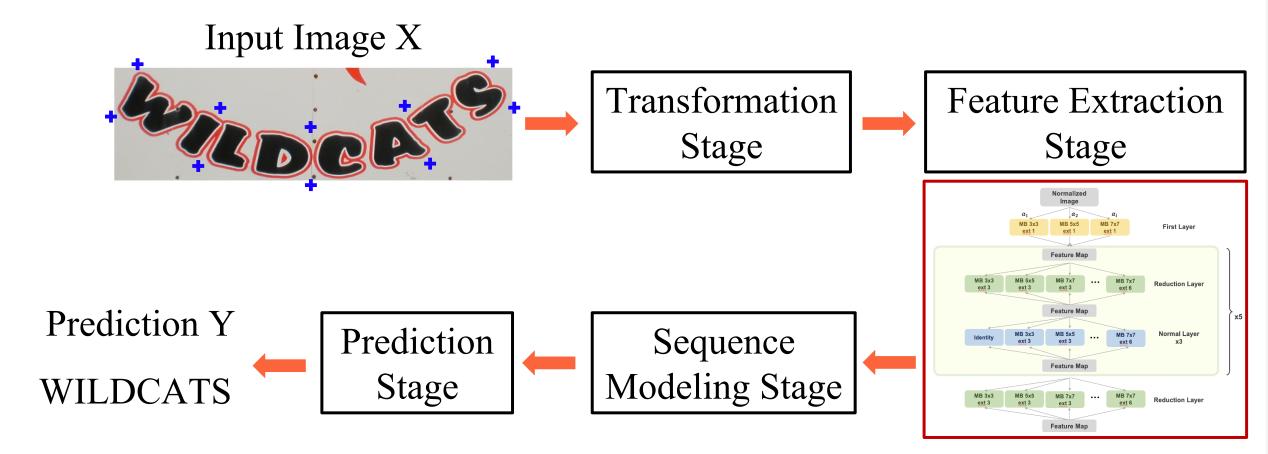
DongHyun Kim

Min-Kook Choi

Motivation

• What is STR:

- \circ Scene Text Recognition
- on diverse appearances or in imperfect conditions



• Why STR + NAS:

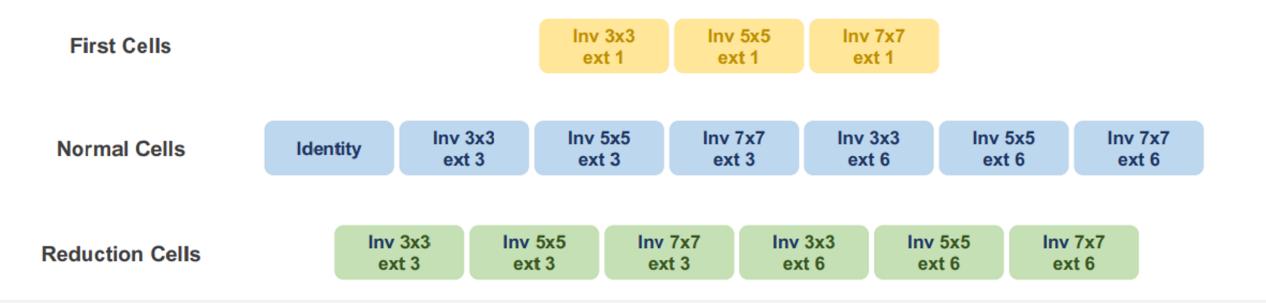
- Automate the process of designing STR model
- Expand the field of NAS

hutom

Pipeline of Scene Text Recognition:

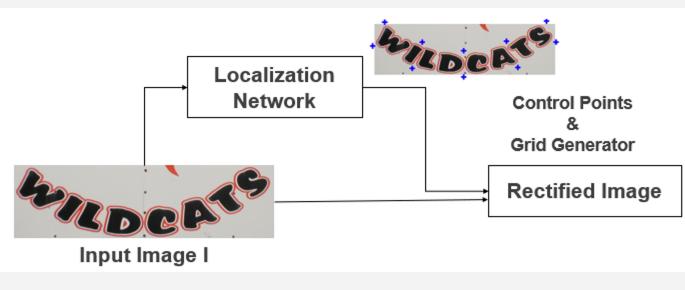
hutom

Our Contributions:

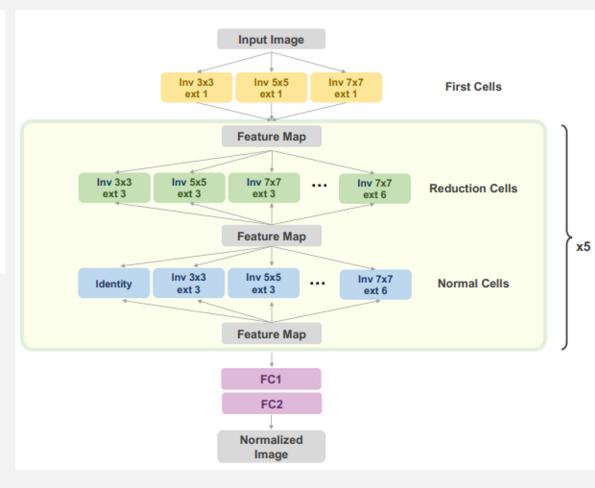

- 1. Expand the application field of NAS
- 2. NAS for CNN based modules (transformation, feature extraction) of STR
- 3. Proxyless approach;
 - let meta-learner directly find well-adapted modules on STR scenario

Method:

- Architecture Space
- Rectifier Search
- Feature Extractor Search
- How to train

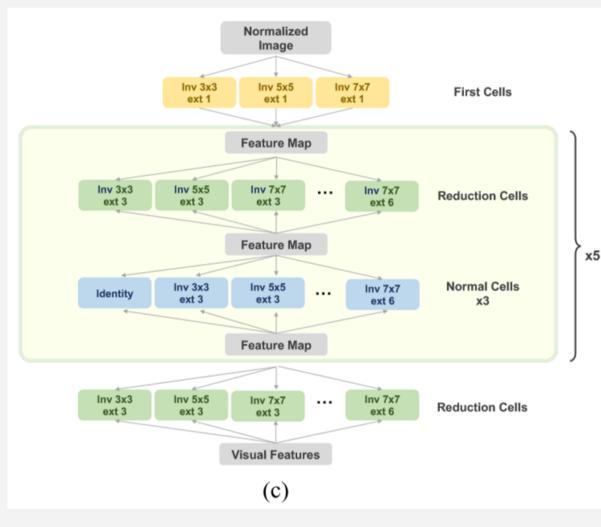

Architecture Space:

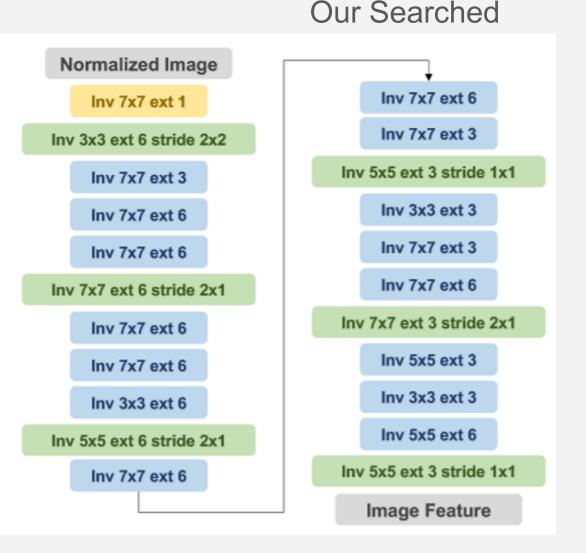
- tree-structured architecture space
- first, normal, reduction cell
 - MobileNet v2 based: for parameter-efficient
 - narrow down the search space; kernel size & expansion ratio



Rectifier Search:

• TPS-based approach


Model Structure of Localization Network


hutom

Feature Extractor Search:

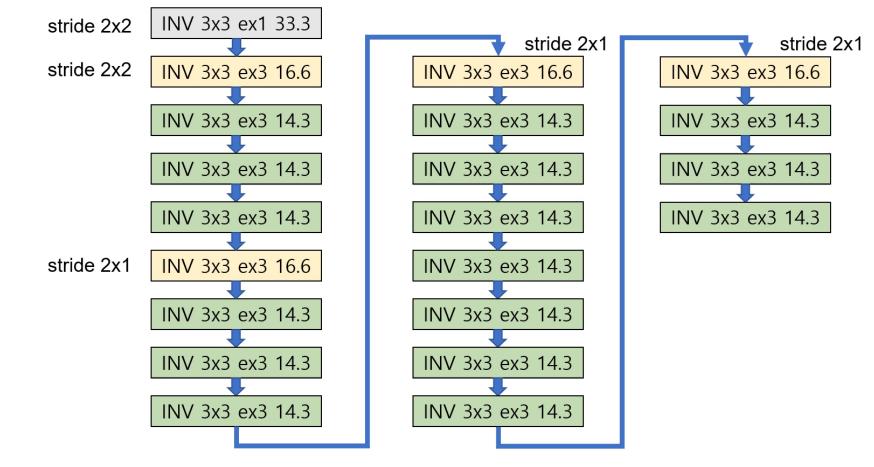
Model Structure of Feature Extractor

hutom

8

How to Train

- **Respectively** update **architecture** parameters & **model** parameters
- Loss for updating architecture parameters
 - Cross Entropy Loss


$$\frac{\partial L}{\partial \alpha_i} \approx \sum_{j=1}^N \frac{\partial L}{\partial g_j} \frac{\partial \frac{exp(\alpha_j)}{\sum_k exp(\alpha_k)}}{\partial \alpha_i} = \sum_{j=1}^N \frac{\partial L}{\partial g_j} p_j(\delta_{ij} - p_i)$$

• Latency : previously measured for every possible dimensions

$$L_{total} = L_{CE} + \lambda_1 * L_{latency}$$

DEMO

Iteration 0

HUMAN TOUCH IN MEDICINE

hutom

10

Experiment Results:

Dataset:

Train - MJSynth + SynthText Test - IIIT, SVT, IC03, IC13, IC15, SVT Perspective, CUTE80

3 Different Settings:

- 1. same hyperparameters as ProxylessNAS settings & total loss
- 2. w/o latency
- 3. w/o latency + lower learning rates

11

Experiment Results

• Architecture Search: Rectifier vs Feature Extractor

First Cell									
3x3	5x5	7x7							
0.334	0.334	0.321							

Normal cell

identity	3x3 ex3	5x5 ex3	7x7 ex3	3x3 ex6	5x5 ex6	7x7 ex6
0.140	0.142	0.147	0.138	0.137	0.150	0.146
0.145	0.152	0.144	0.143	0.140	0.137	0.138
0.140	0.145	0.142	0.143	0.143	0.144	0.143
0.143	0.143	0.144	0.145	0.144	0.140	0.141
0.156	0.140	0.147	0.135	0.140	0.135	0.147

identity	3x3 ex3	5x5 ex3	7x7 ex3	3x3 ex6	5x5 ex6	7x7 ex6
0.009	0.009	0.036	0.379	0.011	0.022	0.534
0.011	0.014	0.015	0.414	0.019	0.018	0.51
:	÷	1	÷	1	:	:
0.082	0.154	0.19	0.16	0.104	0.099	0.211
0.09	0.152	0.199	0.097	0.11	0.201	0.15

First Cell

5x5

0.95

Normal cell

7x7

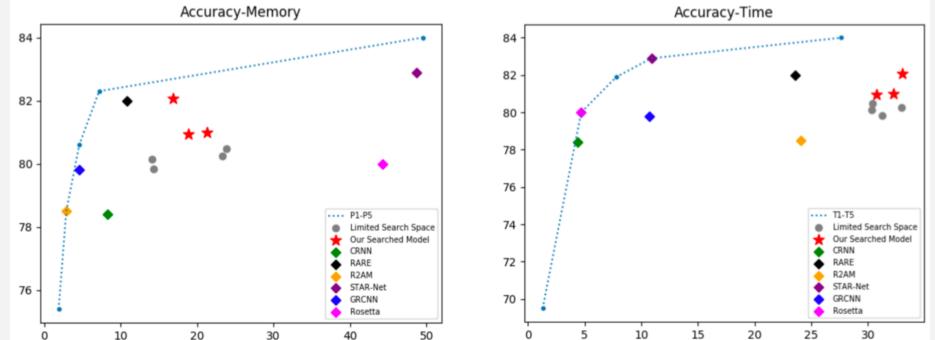
0.016

3x3

0.033

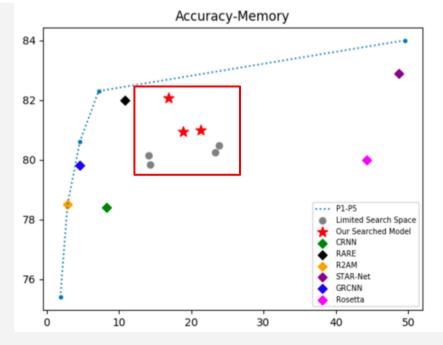
Reduction Cell

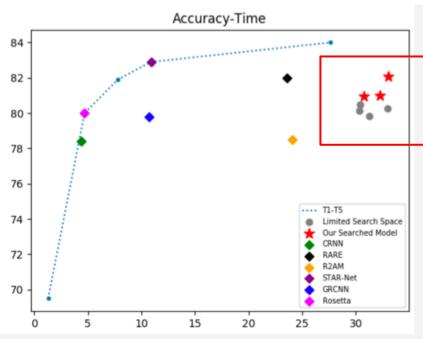
3x3 ex3	5x5 ex3	7x7 ex3	3x3 ex6	5x5 ex6	7x7 ex6
0.176	0.166	0.174	0.152	0.166	0.166
0.169	0.163	0.164	0.173	0.175	0.155
0.158	0.162	0.170	0.165	0.175	0.170
0.173	0.166	0.163	0.163	0.164	0.171
0.154	0.161	0.172	0.165	0.176	0.172


Reduction Cell

3x3 ex3	5x5 ex3	7x7 ex3	3x3 ex6	5x5 ex6	7x7 ex6
0.012	0.012	0.256	0.016	0.018	0.686
0.013	0.024	0.025	0.013	0.232	0.694
:	:	÷	÷	1	1
0.006	0.201	0.157	0.285	0.154	0.144
0.132	0.153	0.158	0.187	0.116	0.255

Experiment Results


Model	IIIT 3000	SVT 647	IC03 860	IC03 867	IC13 857	IC13 1015	IC15 1811	IC15 2077	SVTP	CUTE80	Time ms/image	params $\times 10^{6}$
CRNN [29]	82.9	82.380	81.6	93.1	92.6	91.1	89.2	69.4	70.0	65.5	4.4	8.3
RARE [30]	86.2	85.8	93.9	93.7	92.6	91.1	74.5	68.9	76.2	70.4	23.6	10.8
R2AM [16]	83.4	82.4	92.2	92.0	90.2	88.1	68.9	63.6	72.1	64.9	24.1	2.9
STAR-Net [20]	87.0	86.9	94.4	94.0	92.8	91.5	76.1	70.3	77.5	71.7	10.9	48.7
GRCNN [33]	84.2	83.7	93.5	93.0	90.9	88.8	71.4	65.8	73.6	68.1	10.7	4.6
Rosetta [2]	84.3	84.7	93.4	92.9	90.9	89.0	71.2	66.0	73.8	69.2	4.7	44.3
STR-NAS3	85.7	85.9	93.5	93.1	91.6	90.5	75.6	69.9	76.9	72.2	33.0	16.8
Best combination [1]	87.9	87.5	94.9	94.4	93.6	92.3	77.6	71.8	79.2	74.0	27.6	49.6


hutom

Experiment Results

• Verify the effect of NAS

Model	IIIT 3000	SVT 647	IC03 860	IC03 867	IC13 857	IC13 1015	IC15 1811	IC15 2077	SVTP	CUTE80	Time ms/image	params $\times 10^6$
3*3 ex3	84.433	82.380	92.442	92.272	92.065	90.148	72.170	66.731	74.109	69.097	30.361	14.101
5*5 ex3	83.667	83.308	92.791	92.964	91.715	90.443	71.121	65.527	75.039	69.097	31.251	14.292
5*5 ex6	84.333	81.917	93.140	93.541	91.599	90.049	72.612	66.827	75.194	67.361	32.994	23.283
7*7 ex6	84.567	83.153	92.907	92.388	91.249	89.655	73.771	67.646	75.194	68.056	30.415	23.857
STR-NAS1	84.967	83.771	92.907	92.849	92.182	91.034	73.771	67.935	74.729	70.139	32.238	21.332
STR-NAS2	85.000	83.771	94.070	93.772	92.532	91.034	73.440	67.935	73.488	68.750	30.738	18.923
STR-NAS3	85.667	85.935	93.488	93.080	91.599	90.542	75.594	69.860	76.899	72.222	33.017	16.821

hutom

Conclusion:

• We are the pioneers of the **NAS on STR** with results suggesting positive potential development.

Future Work:

- We can apply NAS to other **pipeline of STR modules**, or design the improved algorithm to handle with sensitive localization network
- We can make improvements on many other real-world applications by applying NAS

THANK YOU!

Memory-Efficient Models for Scene Text Recognition via Neural Architecture Search

SeulGi Hong

DongHyun Kim

Min-Kook Choi

