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Why efficient ConvNets?



Goal: Accuracy and Efficiency n

* Mobile and embedded computer vision applications require accurate
and efficient ConvNets

Accuracy: Essential for many applications Efficiency: Real-time inference on
such as security cameras and embedded processors with limited
autonomous driving compute & power budgets



Designing accurate and efficient
ConvNets is challenging.



Challenge #1: Intractable design space 'i

* Design space of Deep Neural Nets is
huge!
—VGG16[1] has 13 conv layers
— Design choices for each layer:
e kernel size ={1, 3, 5}

e channel size = {32, 64, 128, 256,
512}

— Search space = (3x5)*13 = 2e15
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[1] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognitign.
arXiv preprint arXiv:1409.1556, 2014.



Challenge #2: Conditional optimality 'i

* |deally, we should design different ConvNets for different devices

* In reality, due to the cost of design & training ConvNets, we can
only afford to design one and deploy to all conditions
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Challenge #3: Inaccurate metrics n

* Previous works focus on efficiency proxies: parameter size or FLOPs

* Proxies do not always reflect actual efficiency

— NASNet-A[1] has slightly smaller FLOPs than MobileNetV1[2], but the latency
is 1.6x slower
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[1] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." CVPR18
[2] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv:1704.04861



Rethinking the flow of ConvNet design



Previous: Manual design

* Manual design:
e Can only afford a few iterations -> suboptimal design

Search space
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Previous: neural architecture search

Search based neural architecture search
* Discovered models surpassed manual design [1, 2]

 Computationally expensive: Need to enumerate and train thousands of NNs
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[1] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." CVPR18 10
[2] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile.” CVPR19



Our approach:

1) FBNet: Differentiable neural
architecture search

2) ChamNet: Hardware aware model
adaptation

[1] Wu et al., FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019
[2] Dai et al., ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation, CVPR 2019



Differentiable Neural Architecture Search 'i
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* Instead of training
thousands of NNs, we only
train super net once
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FBNet search space 'i

e Each “layer” of a network can choose a different module

Stochastic super net
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Candidate modules with
different hyper-parameters
* Kernel size: 3,5

* Expansionrate: 1, 3,6

e Skip: no-operation
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FBNets vs. previous state-of-the-art

ImageNet top-1 Accuracy
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[1] Sandler, Mark, et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks.” CVPR18

[2] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR19 1



FBNets for different target devices

« Apple All

* Big: 2 ARMv8 @ 2.5 GHz

e Little: 4 ARMvV8 @ 1.4 GHz

e  Vectorization: 4-wide 32-bit MAC
* LPDDR4x memory (30 GB/s)

* GPU + Neural Processing Engine

* Snapdragon 835

* Big:4 ARMv8 @ 2.4 GHz

e Little:4 ARMv8 @ 1.9 GHz

* Vectorization: 4-wide 32-bit MAC
« LPDDR4x memory (30 GB/s)

e Adreno 540 GPU

0 FBNet latency on target devices

* Under similar accuracy constraint 25 _I_ 1.4x
(73.27% vs 73.20%), FBNet 20 eedup
optimized for iPhone-X achieves 1.4x
speedup over the Samsung 10
optimized model >
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FBNetV2: Differentiable Neural Architecture Search
for Spatial and Channel Dimensions
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Our approach:

1. FBNet: Differentiable neural
architecture search

2. ChamNet: Hardware aware model
adaptation

[1] Wu et al., FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019
[2] Dai et al., ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation, CVPR 2019



Challenge #2: Conditional optimality n

e One model cannot fit all

* Performing a NAS per device per task per use case: Too expensive
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The Chameleon framework

Chameleon framework
* Predictive model based
e Search in CPU minutes with adaptive genetic algorithm
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[ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation; Dai et.al]




Accuracy predictor

Gaussian process (GP) accuracy predictor
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Accuracy predictor

Accuracy predictor
* Very efficient model evaluation
* No training during search

Gaussian process MLP
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Latency and energy predictor 'i

CNN latency look-up table (LUT)

. Fast and reliable latency estimation

. Network latency = X operator latency
Energy predictor

. GP + Bayesian optimization

. Based on real measurements on hardware
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Experiments on Mobile CPU and DSP

Search space: #Bottlenecks, #Filters, expansion, input resolution
* Base module: Inverted residual

* 8.5% absolute accuracy gain at 4ms compared to MobileNetV2

* 6.6% absolute accuracy gain at 10ms compared to MnasNet
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Energy-constrained adaptation

Energy-driven adaptation (base module: Inverted residual)

Search space: #Bottlenecks, #Filters, expansion, expansion, input resolution
e Significant energy reduction

e Platform: Mobile CPU
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Summary

* Challenges of efficient ConvNet design:
— Intractable search space
— Conditional optimality
— Inaccurate metrics

* We proposed FBNets & ChamNet

— Extremely fast: 8 GPUs for 24 hours, 421x faster search

— State-of-the-art performance: same accuracy, 1.5x faster, 2.4x smaller FLOPs
— Latency and Energy based optimization for architectures instead of FLOPs

— Efficient architecture search for specific devices or specific tasks
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