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Medical Image Analysis

* What?
* To gain high-level understanding from medical images

 Why?
» Disease diagnosis, treatment planning and surgery guidance

* How?



Medical Image Analysis
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Case Study - 3D Medical Image
Segmentation

Given 3D volumes (e.g. CT, MRI) as input, to extract 3D structures
of organs or tumors
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https://devblogs.nvidia.com/annotation-transfer-learning-clara-train/
https://pbs.twimg.com/media/DBozgARUQAAE66r.jpg

Background

e U-Shape Network
o One of the most popular and effective architecture styles in medical imaging.

Since was proposed in 2015, various U-shape networks are proposed and
achieve excellent performance.

o Recently, nnUNet (variant of U-Net) won the Medical Segmentation Decathlon
(MSD’18) and Kidney and Tumor Segmentation Challenge (KiTS 19).

e Neural Architecture Search (NAS)
o Design network automatically instead of manually.
o Architectures from NAS have shown superior performance (i.e. accuracy,
latency, or model size) compared with manually designed ones.

to achieve optimal architectures for 3D medical image
segmentation

Ronneberger, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI'15



Background

e Current NAS methods can be divided into the following categories
o Reinforcement learning (RL) based search (NASNet)
o Evolutionary algorithm (EA) based search (AmoebaNet)
o Gradient based search (DARTS)
o One-shot NAS (SMASH)

o However, literatures mainly focus on 2D image classification

Zoph, et al. Learning transferable architectures for scalable image recognition, CVPR’18.
Real, et al. Regularized evolution for image classifier architecture search, AAAI'19.

Liu, et al. Darts: Differentiable architecture search, ICLR’18.

Brock, et al. SMASH: one-shot model architecture search through hypernetworks, ICLR’18.
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e Gradient-based searching

o “V-NAS” (3DV’19)

e Hybrid searching

o “C2FNAS” (CVPR’20)
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e Hybrid searching

o “C2FNAS” (CVPR’20)



V-NAS

“DARTS”

Liu, et al. Darts: Differentiable architecture search, ICLR’18.



V-NAS

o Differentiable Neural Architecture Search
o Started from 3D U-Net

o Search for optimal convolution operations
m 3D convolutions
m 2D convolutions

m Pseudo-3D convolutions (2D plus 1D)



V-NAS
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V-NAS

Algorithm 1: V-NAS

Partition the whole labeled dataset S into the disjoint Sirain, Sval and Stest

Create the mixed operations O) and OY parametrized by o} and 2, respectively
while training not converged do

1. Update weights w by descending V Lirain (W, ¢, B)
L 2. Update a and B by descending Vo, g Lval(w, a, 3)

Replace OL with O. = E;,i = argmaxkexp(agc)/Z?zo exp(al)
Replace O} with O} = D;,i = argmaxkexp(ﬁ,g)/Zﬁ:O exp(6Y)




V-NAS

« Differentiable Neural Architecture Search
o Searching is conducted during model training
o Weights for different operations are updated on-the-fly
o The searched network is finalized after training is converged

o Re-training final network from scratch for optimal performance



V-NAS

Experiments

Method Categorization  Mean DSC__ Max DSC Min DSC Method Categorization  Mean DSC __ Max DSC Median
BV TR TR YN AT A (e V-NAS-Lung  Search  55.27 £31.18% 90.32% 66.95%
M ii“c it 0 91~29U° adaidh o | V-NAS-NIH Search 54.01 +31.39%  92.17% 68.93%
aseine X : 2970 2970 L0 Baseline Mix 52.27 + 31.40% 89.57% 61.71%

Xia et al. [16] 2D/3D  84.63+£5.07% 91.57% 61.58%
3D/3D 3D 53.74 £30.66% 91.44% 60.55%

Zhu et al. 18] 3D 84.59 +£4.86% 91.45%  69.62%
) 2D/2D 2D 52.01 +31.50% 92.58% 63.27%

Cai et al. [1] 2D 82.40 £ 6.70% 90.10%  60.00%
P3D/P3D P3D 51.48 + 32.46%  92.40% 63.89%

Zhou et al. [17] 2D 82.37+5.68% 90.85%  62.43%
UNet 3D 52.94 +31.28% 93.58% 61.08%
Dou et al. [3] 3D 82.25+5.91% 90.32%  62.53% VNet 3D 50.47 + 31.37% 93.85% 57.82%
Roth et al. [14] 2D 78.01 £8.20% 88.65%  34.11% i ore Temms s

Table 2. Performance of different methods on the NIH dataset evaluated by the 4-fold
cross validation. The architecture searched on NIH is coded as [0 00,0001,2020

Table 3. Performance of different methods on the MSD Lung tumors dataset evaluated
by the same 4-fold cross validation. The searched architecture on Lung tumors is coded
acfNNN 1901 919000 NNNand 0N 217 1] It is worth noting that the searched

22,00 0] for the 16 Encoder cells, and [0 Method Categor. Pancreas DSC

Pancreas Tumors DSC eralized to the Lung tumors dataset.

Mean Max

Min Mean Max Median

I V-NAS Search 79.94 4 8.85% 92.24% 36.99% 37.78 + 32.12% 92.49% 38.32% |

18.05%

Baseline Mix  78.41 =9.40% 92.21% 40.08% 30.10 = 31.40% 92.95%
UNet 3D 79.20 £9.43% 91.95% 40.72% 35.61 + 32.20% 93.66% 32,23%
VNet 3D 79.01 £9.44% 92.05% 28.15% 35.99 +31.27% 92.95% 35.91%

Table 4. Performance of different methods on the MSD Pancreas tumors dataset
evaluated by the same 4-fold cross validation. The results are given on the normal
pancreas regions and pancreatic tumors, respectively. The searched architecture on
Pancreas tumors dataset is coded as [022,2000,221211,011]and [1020 1].



V-NAS
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e Gradient-based searching

o “V-NAS” (3DV’19)
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Our Proposed Approach

e “C2FNAS”

O Coarse-to-fine neural architecture search

e Multi-Level Searching Strategy
o Step 1- Macro-level
m Evolutionary algorithm for macro-level
o Step 2 — Micro-level
m Super-Net training for micro-level

o Step 3 - Compound Scaling

17



Search Space — Step 1/3

e Search at Macro-Level (Network)
o Network Shape: According to the order of down-sample layers and up-sample
layers, we can divide networks into and
o Layer Assignment: Different from a symmetric U-Net design, we try to search
for different assignments of layers, which make it
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U-Net Stacked-Hourglass

Newell, et al. Stacked hourglass networks for human pose estimation, ECCV’16.
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Search Space — Step 2/3

e Search at Micro-Level (Cell)

o Next, search for a replacement for op in each cell, each op can be selected from

[ | 3x3x3 3D Conv.

[ | 5x5x5 3D Conv.

B 3x3x1 Pseudo 3D Conv.

B 5x5x1 Pseudo 3D Conv.

B 3x3x3 3D Conv. with Dilation = 2

[] 5x5x5 3D Conv. with Dilation = 2



Search Space — Step 3/3

e Compound Scaling
o To better balance the performance and model size, we scale the patch size, cell

numbers, and filter numbers, inspired by EfficientNet (STOA performance on

ImageNet)

Tan, et al. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML’19.
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Search Space - Network Level
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Search Method T

e Network-level: Small search space (at most one thousand candidates)

o Intuitively, models with similar architectures should have similar performances

o We propose a clustering-based evolutionary algorithm

Step 1 - Search space is divided into K clusters, based on their similarity on network
architectures.

Step 2 - Each cluster can generate child net based on a probability, we train those nets
and update performance history for each cluster.

Step 3 - A net is random sampled from each cluster. By comparing these nets

performance, we re-rank the clusters and assigned corresponding probability.

22



Search Method

Algorithm 1 Topology Similarity based Evolution
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: populatzon < all topologies

= {p1,p2,...,pr} < Cluster(population)

: history H+—o
. set of trained models M = {m1,ma, ..

. mk} — {@}k
fori =1tokdo
model.topology < RandomSample(p; )
model.accuracy < TrainEval(model.topology)
add model to H and m;

: while |H| < ldo

while HasIdleGPU() do
model for compare D «+ &
fori =1tokdo
add RandomSample(m;) to D
rank P based on corresponding accuracy in D
model.topology < SampleUntrained(prqni1)
model.accuracy < TrainEval(model.topology)
add model to H and mrank1
return highest-accuracy model in H
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Search Method

e Cell-level: Search space can be as large as more than millions of

candidates, thus EA/RL based method can be less effective.

o Thus, we treat each candidate as a sub-graph of a super-net.
o We train the super-net by sampling paths uniformly and use it to predict the performance

for each candidate. (one-shot NAS)

e Compound scale: Small search space, based on EfficientNet, grid search

can be an alternative solution.

24



Datasets

Generalisable 3D Semantic Segmentation

e Medical Segmentation Decalthlon (MSD)

Task Training Test
01 - Brain Tumor Segmentation 484 266
06 - Lung Tumor Segmentation 63 32
07 - Pancreas and Tumor Segmentation 281 139

e We only have access to training labels, and testing results can only be
obtained through submitting to test server, once a day at most, which
guarantees that our model is not "over-fitting" the test data

Medical Segmentation Decathlon

25



Final Architecture (Searched on Pancreas Seg.)
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Model Training Details

* Pre-processing
* Intensity clipping and standard normalization

* Augmentation

e Random rotation and flipping
* Optimizer

* SGD

* Loss
» Soft dice loss and cross-entropy



2AXNY]|
Results on Test Set — Dice’s Score (DSC) “°“~ ixi+

Brain Tumor DSC DSC DSC

Segmentation Edema Non-enhancing Tumor Enhancing Tumor Average
NV_DLMED 67.52 45.00 68.01 60.18
nnUNet 67.71 47.73 68.16 61.20
Ours 68.74 48.22 69.19 62.05
Lung Tum.or DSC Pancreas and :I'umor DSC DSC Average
Segmentation Tumor Segmentation Pancreas Tumor
NV_DLMED 52.15 NV_DLMED 78.42 38.48 58.45
nnUNet 69.20 nnUNet 79.53 52.27 65.90
Ours 70.94 Ours 80.41 53.67 67.04

nnUNet is the winner of Medical Segmentation Decathlon (MSD) last year, and NV_DLMED (previous entry) was second place28



Model Comparison

Model 3D U-Net V-Net AH-Net nnU-Net Ours
Params (M) 16.32 45.61 27 .11 10.36 3.91
FLOPS (G) 802.9 3225 29.5 202.25 184.8

It is noticeable that our model is much more compact compared with other
models, and also fewer FLOPS compared with other 3D models. The
evaluation is done with input size (1,4,96,96,96), and output for 4 classes.
AH-Net has a much smaller FLOPS because it uses a 2D encoder.
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Analysis

nnUNet (“state-of-the-art”) is a 2D U-Net, a 3D U-Net, or Cascaded 3D U-Nets,
with well-tuned hyperparameters, it applies many tricks like many kinds of data
augmentation, test-time augmentation, a complicated learning rate schedule,
coarse-to-fine, model ensemble, and so on.

While our method mainly focus on improving the model itself with much simpler
settings. nnUNet can be considered as an upper-bound of past U-Net design
with many engineering tricks. Thus, our model truly beat the past U-Net design
by beating nnUNet.

30



Search Cost Estimation (16 GB V100)

® Train a Network: 30 GPU hrs (3~4 hrs with 8GPU)

® Net-level Search: 50 networks are evaluted => 1500 GPU hrs

® Cell-level Search: SuperNet training 80 GPU hrs, search (evaluate) ~300 GPU hrs
® Compound Scale: ~20 Networks and thus 600 GPU hrs

® In total: 1500 + 80 + 300 + 600 = ~2480 GPU hrs = ~180 GPU days

® In practice: Using 32 GPUs in parallel, searching is done within 100 hours on average

® We are looking for some ways to reduce the search cost, like increasing GPU utilization, and

reduce training iterations, and so on.

31



Case Study

NV-DLMED Ours
Pancreas (Red) 81.87% 84.14%
Tumor (Green) 0.00% 74.77%

Image NV-DLMED Ours 32



Case Study

NV-DLMED Ours
Edema (Red) 70.58% 78.61%
Non-enhancing Tumor (Green) 10.18% 51.51%
Enhancing Tumor (Blue) 32.73% 46.34%

Image

NV-DLMED

Ours
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Task Brain Heart Liver Pancreas Prostate
Class 1 2 3 1 1 2 1 2 1 2
CerebriuDIKU [ 1] 69.52 | 43.11 | 66.74 | 8947 | 9427 | 57.25 | 71.23 | 2498 | 69.11 | 86.34
Lupin 66.15 | 41.63 | 64.15 | 91.86 | 9479 | 6140 | 7599 | 21.24 | 72.73 | 87.62
NVDLMED [ 7] 67.52 | 45.00 | 68.01 | 9246 | 95.06 | 7140 | 78.42 | 38.48 | 69.36 | 86.66
K.A.V.athlon 66.63 | 46.62 | 6746 | 91.72 | 94.74 | 61.65 | 7497 | 4320 | 7342 | 87.80
nnU-Net [ ] 67.71 | 47.73 | 68.16 | 92.77 | 95.24 | 73.71 | 79.53 | 52.27 | 75.81 | 89.59
C2FNAS-Panc 67.62 | 48.56 | 69.09 | 92.13 | 9491 | 71.63 | 80.59 | 52.87 | 73.11 | 87.43
C2FNAS-Panc* 67.62 | 48.60 | 69.72 | 9249 | 9498 | 72.89 | 80.76 | 54.41 | 74.88 | 88.75
Task Lung Hippocampus HepaticVessel Spleen | Colon | Avg (Task) | Avg (Class)
Class 1 1 2 1 2 1 1
CerebriuDIKU [1] 5871 | 89.68 | 88.31 | 59.00 | 38.00 95.00 28.00 67.01 66.40
Lupin 54.61 | 89.66 | 88.26 | 60.00 | 47.00 94.00 9.00 65.61 65.89
NVDLMED [ 7] 52.15 | 8797 | 86.71 | 63.00 | 64.00 96.00 56.00 72.73 71.66
K.A.V.athlon 60.56 | 89.83 | 88.52 | 62.00 | 63.00 97.00 36.00 71.51 70.89
nnU-Net [ ] 69.20 | 90.37 | 88.95 | 63.00 | 69.00 96.00 56.00 76.39 75.00
C2FNAS-Panc 69.47 | 86.87 | 8544 | 63.78 | 69.41 96.60 55.68 75.87 74.42
C2FNAS-Panc* 70.44 | 8937 | 87.96 | 64.30 | 71.00 96.28 58.90 76.97 75.49

Table 1. Comparison with state-of-the-art methods on MSD challenge test set (number from MSD leaderboard). * denotes the 5-fold model
ensemble. The numbers of tasks hepatic vessel, spleen, and colon from other teams are rounded. We also report the average on tasks and
on targets respectively for an overall comparison across all tasks/targets.



Contributions

e Designed search spaces for 3D medical imaging segmentation, which leverages
the merits of other established network design

e Designed different search methods for different search spaces, boosting
searching efficiency

e Achieved architectures which beat previsous SOTA U-shape networks

35
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NVIDIA Clara Medical Imaging
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NVIDIA Clara Medical Imaging
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Clara Train SDK includes Al-Assisted Annotation APIs and Annotation server that can be seamlessly integrated into any medical viewer making them Al capable. The training framework
includes decentralized learning techniques like federated learning and transfer learning. The SDK also makes available model applications packaged as MMARS (Medical Model ARchive)
available to users, providing an intuitive config based environment for data scientists and researchers to get kick-started with Al development.

Al-Assisted Annotation

« Al Annotation Server now includes NVIDIA TensorRT inference server as its inference back-end providing a more

OPTIMIZED Al TRAINING FOR MEDICAL IMAGING

Horovod - Automatic Mixed Precision - Smart Cache - 8 GPUs

rensoriow euve | 75
Clara Train 1.0 _ 3.81 hour

Clara Train 2.0 IBJ mins

55x faster vs. TensorFlow Native
28x faster vs. Clara Train 1.0

Click on graph for more results

Training Framework

Federated learning is a collaborative learning technique that allows for distributed training with multiple clients. With
Clara Train v2.0 we bring privacy-preserving Federated Learning that enables researcher to collaborate and build Al
Models without sharing private data.

Automatic Mixed Precision(AMP) allows researchers to train with half precision and maintain network accuracy. AMP
can reduce memory usage and provide significant speed ups to training process.

Deterministic training on GPUs is now available in the SDK and is crucial to guarantee reproducibility for iterative
experimentation.

The option to use Smart Cache in new task specific ImagePipelines allows for faster and more efficient training by
saving intermediate results and skipping repeated operations.

New loss functions and models have been added.

Transforms have been rewritten to be more purpose based with ShapeFormat and Medicallmage taken into account to
simplify configuration and improve clarity.

You can use MMARSs to set up training configurations with json, but you can directly use python code with the Clara
Train API for greater customization including bringing your own components.

28x faster vs. Clara Train 1.0

Click on graph for more results

« Transforms have been rewritten to be more purpose based with ShapeFormat and Medicallmage taken into account to
simplify configuration and improve clarity.

« You can use MMARSs to set up training configurations with json, but you can directly use python code with the Clara
Train API for greater customization including bringing your own components.

& Download Clara Train SDK (v] Annotation Client ot Devtalk Forum

https://developer.nvidia.com/clara-medical-imaging



https://developer.nvidia.com/clara-medical-imaging

Thank you!

Questions?
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