
Neural Architecture Search: 
Has the revolution happened yet?

Debadeepta Dey

Microsoft Research

1



“I have no idea how to come up with this!” –
John Langford, April 2018



Motivation for 
Neural 

Architecture 
Search

• Model structure design is difficult.

• Human experts have designed most 
networks till now.

• Many data-sets without good priors on 
network design. 

• Many models are similar to each other. 

• Hyper-parameter tuning is difficult.

• Trying different architectures manually is 
difficult.

• Massive talent shortage!



15-minute literature overview

4



Neural 
Architecture 
Search

• What architectures can be represented?

• Macro vs. Micro?

• How much human bias goes in search space design?

Search 
space?

• How to explore the search space?

• Classical explore-exploit problem

• Want to find good architectures quickly.

• Want to avoid premature convergence to 
suboptimal ones.

Search 
strategy?

• Find architectures that achieve high predictive 
performance on unseen data

• How do we estimate this performance?

• Can’t simply perform standard training and validation 
(too expensive).

• Lots of research goes here.

Performance 
estimation 
strategy?



6
Graphic credit: Neural Architecture Search: A Survey, Elsken et al., 2018

Stack cells with predetermined skeletons. (Zoph et al., 2018)
Domain knowledge injection for good skeletons needed.
Our work shows lots of performance left on the table.



7
Graphic credit: Neural Architecture Search: A Survey, Elsken et al., 2018

General search space.
Little restriction on the kind of architectures that can be realized.
Can be hard to search due to size of space.



Automatic 
Architecture 

Hunt 
(AutoML)

• Continuously updated list of NAS papers:

• https://www.ml4aad.org/automl/literature-
on-neural-architecture-search/

• Excellent survey article:

• Neural Architecture Search: A Survey, 
Elsken, Metzen and Hutter, 2018

https://www.ml4aad.org/automl/literature-on-neural-architecture-search/
https://arxiv.org/abs/1808.05377


Neural Architecture 
Search with 
Reinforcement Learning 
(Zoph and Le, 2016)







Efficient Neural 
Architecture Search via 
Parameter Sharing
(Pham et al, 2018)



ENAS

On CIFAR-10 achieves a test error of 
2.89%

On Penn Treebank achieves 
perplexity of 55.8 (NAS had 62.4)

In all experiments used a single 
Nvidia 1080Ti GPU
Search takes less than 16 hours

Compared to NAS >1000x reduction in search time



The main contribution of this work is to improve the efficiency 
of NAS by forcing all child models to share weights to eschew 
training each child model from scratch to convergence.



Recurrent cell sampling



Convolutional cell sampling









DARTS: Differentiable 
Architecture Search 
(Liu et al. 2018)



DARTS

• No controllers!

• No performance prediction!

• Outperforms ENAS, PNAS.

• Cell-based (micro).

• Achieves 2.83% error on CIFAR-10.

• Uses 1000x less computation than Regularized 
Evolution.





ProxylessNas: Direct 
Neural Architecture 
Search on Target Task 
and Hardware 
(Cai et al. 2018)



37

Fixes the memory problems in DARTS



38



39



Background: Neural Architecture Search

40

Tutorial on Neural Architecture Search at Microsoft Machine Learning Day (October 17th, 2018): 
Neural Architecture Search: State-of-the-art Overview and more updated version.

https://www.youtube.com/watch?v=wL-p5cjDG64
https://www.microsoft.com/en-us/research/publication/efficient-forward-architecture-search/


Project Petridish:
Efficient Forward 
Architecture Search

Paper: https://arxiv.org/abs/1905.13360v1 (NeurIPS 2019)

Blog post: https://www.microsoft.com/en-us/research/blog/project-petridish-efficient-forward-neural-architecture-search/

Code: https://github.com/microsoft/petridishnn (TensorFlow currently, PyTorch coming soon)

Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, Debadeepta Dey

41

https://github.com/microsoft/petridishnn
https://arxiv.org/abs/1905.13360v1
https://github.com/microsoft/petridishnn
https://www.microsoft.com/en-us/research/blog/project-petridish-efficient-forward-neural-architecture-search/
https://github.com/microsoft/petridishnn


Motivation for Growing Networks

42

• Fully general method!
• Cell-search not feasible when you don’t know good outer skeleton! 

• Lifelong learning models.
• New task/extra or evolving data can be naturally incorporated.

• Can accommodate larger models.

• Exploit prior knowledge when available.
• Explore a forest of models.

• Warm start from existing models.

• Universal post-processing for human-designed models!

• Exploit information from similar models during search.



Project Petridish

• An overview of neural architecture search

• Method
• Warm start 

• Inspired by gradient boosting.

• Expand the search tree:
• Focus on the most cost-effective ones.

• Directly search the pareto-frontier.

• Predict performance.
• Utilizing model initialization to select children to train.

43



44



Incremental Training

Model Model Model

Phase 0
Original model

Phase 1
Initialize candidates, 

but do not allow candidates 
to affect the original model.

Phase 2 
Officially add an 

candidate to model.
Now the candidate can 

affect the original.

45



Incremental Training

C

B

A

input

C

B

A

input

Candidate

Sum

Forward = zero
Backward = identity

Forward = identity
Backward = zero

Regular edge:
Forward = identity
Backward = identity

Original model Initialize candidate
46

Candidate accumulates 𝛻B𝐿𝑜𝑠𝑠



Incremental Training
C

B

A

input

Candidate

Sum

Scale the input. 
Initial scale = 1

Scale the input. 
Initial scale = 0

C

B

A

input

Candidate

Sum

Initialize candidate Officially add candidate to model 47



Incremental Training (Summary)

48

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

𝑥𝑜𝑢𝑡

ℓ

…

…

𝑥𝑐

𝑜𝑝1 ∘ 𝑠𝑔

𝑜𝑝2 ∘ 𝑠𝑔

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

ℓ

…

…

𝑥𝑜𝑢𝑡 𝑠𝑓 𝑥𝑐

𝑜𝑝1

𝑜𝑝2

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

ℓ

…

…

𝑥𝑜𝑢𝑡 scale

… … …

𝑥 𝑥 𝑥

… … …

(a) (b) (c)



Incremental Training (Choice of Candidates)

49

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

𝑥𝑜𝑢𝑡

ℓ

…

…

…

𝑥

…

(b’)

𝑥𝑐𝑠𝑓

𝑜𝑝1,1 𝑜𝑝1,𝑘 𝑜𝑝2,1 𝑜𝑝2,𝑘… …

𝑠𝑔 𝑠𝑔

𝑠𝑒𝑙𝑒𝑐𝑡

𝑥𝑐

𝑜𝑝1 ∘ 𝑠𝑔

𝑜𝑝2 ∘ 𝑠𝑔

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

ℓ

…

…

𝑥𝑜𝑢𝑡 𝑠𝑓

…

𝑥

…

(b)



Incremental Training (Choice of Candidates)

50

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

𝑥𝑜𝑢𝑡

ℓ

…

…

…

𝑥

…

(b’)

𝑥𝑐𝑠𝑓

𝑜𝑝1,1 𝑜𝑝1,𝑘 𝑜𝑝2,1 𝑜𝑝2,𝑘… …

𝑠𝑔 𝑠𝑔

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑒𝑙𝑒𝑐𝑡

𝑥𝑐

𝑜𝑝1 ∘ 𝑠𝑔

𝑜𝑝2 ∘ 𝑠𝑔

𝑥𝑖𝑛,2

𝑥𝑖𝑛,1

ℓ

…

…

𝑥𝑜𝑢𝑡 𝑠𝑓

…

𝑥

…

(b)



Incremental training during search

51

Consider a path of models in the 
search tree. 
Want to know their performance.

Model
Id = 0

Model
Id = 1

Model
Id = 2

…

Model

Option 1 (From-scratch) : 
• Train models independently.
• 300 epochs per model

Option 2 (Incremental) : 
• Start from parent; initialize children
• 40 epochs per model



Search on distributed systems

Model Model Model

Phase 0
Parent model

Phase 1
Initialize candidates, 

but do not allow candidates 
to affect the parent model.

Phase 2 
Officially add candidate 

to model.
Now the candidate can 

affect the parent.

52

Q_parent:
Pool of parent models 

Q_candidate:
Queue of model with 

candidates to initialize

Q_child:
Queue of models to train



Search on distributed systems

• Q_parent: explore-exploit a diverse set of good models to extend.

• Q_candidate: initialize promising candidates

• Q_children: train promising children

• How do we know a model is good?

53



Expanding the Most Cost-efficient Models

54

Cost (flops)

Lo
ss

This figure is for 
illustration only



Expanding the Most Cost-efficient Models

55

Cost (flops)

Lo
ss

• Convex hull



Expanding the Most Cost-efficient Models

56

Cost (flops)

Lo
ss

• Epsilon- convex hull

Key advantage:

Method naturally produces a 
‘gallery’ of models which are nearly-
optimal for every serving time 
budget need.

This is critical to production serving 
needs.



Results

57



Reproducibility and fair comparison crisis!

• Nearly impossible to compare algorithms due to differences in
• Search spaces

• Training routine used (does it have all the tips and tricks?)

• Hardware used (TPU vs. GPU vs. driver version vs. cuda version vs…..)

• Stochasticity in training on gpus.

• Community working to establish standard benchmark 
• NASBench-101

• Cannot evaluate weight-sharing, DARTS-like search spaces

• NASBench-201
• Uses different search space than 101. 

58

https://arxiv.org/pdf/1902.09635.pdf
https://arxiv.org/abs/2001.00326


59



Transfer to 
ImageNet

60

No domain-knowledge injection in 
architecture design at all!



Language Modeling

61

Note that since random search is essentially state-of-the-art search algorithm on PTB, we caution
the community to not use PTB as a benchmark for comparing search algorithms for RNNs. The
merits of any particular algorithm are difficult to compare at least on this particular dataset and task
pairing. More research along the lines of Ying et al. (2019) is needed on 1. whether the nature of
the search space for RNNs specific to language modeling is particularly amenable to random search
and or 2. whether it is the specific nature of RNNs by itself such that random search is competitive
on any task which uses RNNs as the hypothesis space. We are presenting the results on PTB for the
sake of completion since it has become one of the default benchmarks but ourselves don’t derive any
particular signal either way in spite of competitive performance.



Is AutoML 
solved?

62



No fully general solution yet but 
useful successes!

Still lots of domain knowledge injection into the process.

Tricks and tips needed for vision datasets are completely different from language or speech datasets (to be 
SOTA).

Need better benchmarks and more rigorous reporting.

Majority papers currently report on CIFAR10/100, ImageNet, PennTree Bank.

Hyperparameters are set to magic constants.



ARCHAI 
• NAS for non-experts

• Turnkey experimentation platform
• MIT license

• High performance PyTorch code base

• Ease of algorithm development
• Object-oriented model definition
• Unified abstractions for training and evaluation
• New algorithms can be written in a few lines of code
• Easily mix and match existing algorithm aspects
• Easily implement both forward and backward search
• Algorithm-agnostic pareto-front generation

• Easily add hardware-specific constraints like memory, inference 
time, flops etc.

• Efficient experiment management for reproducibility 
and fair comparison
• Flexible configuration system
• Structured logging
• Metrics management and logging
• Declarative experimentation
• Declarative support for wide variety of datasets
• Custom dataset support
• Unified final training procedure for searched models

64

ETA: April 2020
https://github.com/microsoft/archai

https://github.com/microsoft/archai


References

65

• Hu et al. Efficient Forward Architecture Search, NeurIPS 2019

• Baker et al. Designing neural network architectures using reinforcement learning. ICLR. 2017

• Cai et al. Efficient architecture search by network transformation. AAAI. 2018

• Cai et al. Path-Level Network Transformation for Efficient Architecture Search. ICML. 2018

• Real et al. Large-scale evolution of image classifiers. International Conference on Machine Learning. 2017

• Real et al. Regularized Evolution for Image Classifier Architecture Search. 2018

• Liu C et al. Progressive Neural Architecture Search. 2018 

• Liu H et al. Darts: Differentiable architecture search. 2018

• Elsken et al. Efficient Multi -objective Neural Architecture Search via Lamarckian Evolution. 2018

• Negrinho & Gordon. DeepArchitect: Automatically Designing and Training Deep Architectures. 2017

• Pham H et al. Efficient neural architecture search via parameter sharing. 2018

• Bender et al. Understanding and simplifying one-shot architecture search. ICML. 2018


