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Introduction

Background

Ø Big data & different types of data

Ø Original elementary form & not labeled

Ø Manually label data: time-consuming & expensive

Ø Model reuse based on labeled data

§ Conventional machine learning: lower accuracy
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What is domain adaptation (DA)?

Human: previous experience and knowledge for 
reasoning & learning

Machine: apply knowledge from other fields into 
current applications

Key idea:

Ø How to find similar domain knowledge for transferring?
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Why DA ?

Label data: time-consuming & expensive

Train from scratch: tedious

Design customized model: complex

Data shift/bias
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Problem2
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XT = { (xj, ?) | j = 1, 2, … , nt}

XS = { (xi, yi) | i = 1, 2, … , ns}
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State-of-the-art methods3
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Traditional methods

Ø Feature selection[Blitzer et al., 2006; Long et al., 2014]

Ø Subspace learning[Gopalan et al., 2011; Gonget al., 2012; Zhang et al., 2019b]

Ø Distribution adaptation[Panet al., 2011; Jiang et al., 2017; Wang et al., 2018]

Deep learning based methods

Ø Discrepancy based[Tzeng et al., 2014; Long et al.,2015; Ghifary et al., 2015]

Ø Reconstruction based[Bousmalis et al., 2016]

Ø Adversarial learning based[Ganinet al., 2016; Tzeng et al., 2017; Liu et al., 2019]



Limitations3
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More or less rely on the backbone networks

Not explore other ImageNet models

Not know which is the best layer
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ImageNet Models4

11



ImageNet Models4
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Extracted features visualization 4
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Domain adaptation methods4

Support vector machines (SVM) & 1-nearest neighbor (1NN) 

Geodesic Flow Kernel (GFK) & Geodesic sampling on 
manifolds (GSM)

CORrelation Alignment (CORAL) 

Transfer Joint Matching (TJM) 

Balanced distribution adaptation(BDA) & Joint distribution 
alignment (JDA)  & Joint Geometrical and Statistical 
Alignment (JGSA) &  Adaptation Regularization (ARTL) & 
Manifold Embedded Distribution Alignment (MEDA) & 
Modified Distribution Alignment (MDA)
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Significance analysis 4

Correlation coefficient 

Coefficient of determination 

Ø The higher the better
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Datasets & Results5
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Datasets



Results5
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Results5
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Classification Accuracy5
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Classification Accuracy5
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Classification Accuracy5
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Best feature extraction layer5
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Take home messages5

Features from a higher-performing ImageNet-trained 
model are more valuable than those from a lower-
performing model for unsupervised domain 
adaptation

The layer prior to the last fully connected layer is the 
best layer for feature extraction 
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Conclusion & future work6

We are the first to examine how features from many 
different ImageNet models affect domain adaptation 

Search the best architecture for feature extraction  

Feature fusion
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Thank you!

Questions?


