

Neural Architecture Search and Beyond

Barret Zoph

Progress in Al

- Generation 1: Good Old Fashioned Al
 - Handcraft predictions
 - Learn nothing
- Generation 2: Shallow Learning
 - Handcraft features
 - Learn predictions
- Generation 3: Deep Learning
 - Handcraft algorithm (architectures, data processing, ...)
 - Learn features and predictions end-to-end
- Generation 4: Learn2Learn (?)
 - Handcraft nothing
 - Learn algorithm, features and predictions end-to-end

Importance of architectures for Vision

- Designing neural network architectures is hard
- Lots of human efforts go into tuning them
- There is not a lot of intuition into how to design them well
- Can we try and learn good architectures automatically?

Two layers from the famous Inception V4 computer vision model. Szegedy et al, 2017

Convolutional Architectures

Krizhevsky et al, 2012

Zoph & Le. Neural Architecture Search with Reinforcement Learning. ICLR, 2017. <u>arxiv.org/abs/1611.01578</u> Real *et al.* Large Scale Evolution of Image Classifiers. ICML, 2017. <u>arxiv.org/abs/1703.01041</u>

Example: Using reinforcement learning controller (NAS)

Zoph & Le. Neural Architecture Search with Reinforcement Learning. ICLR, 2017. <u>arxiv.org/abs/1611.01578</u>

Example: Using evolutionary controller

ImageNet Neural Architect Search Improvements

Tan & Le. EfficientNet: Rethinking Model Scaling for Deep Convolutional Neural Networks, 2019 <u>arxiv.org/abs/1905.11946</u>

Architecture Decisions for Detection Architecture Search

Ghiasi et al. Learning Scalable Feature Pyramid Architecture for Object Detection, 2019 <u>arxiv.org/abs/1904.07392</u>

Video Classification Architecture Search

Learn the connections between blocks

Table 1: State-of-the-art action classification performances on Charades [19].

Method	modality	mAP
2-Strm. [20] (from [18])	RGB+Flow	18.6
Asyn-TF [18]	RGB+Flow	22.4
CoViAR [28]	Compressed	21.9
MultiScale TRN [33]	RGB	25.2
I3D [3]	RGB	32.9
I3D [3] (from [25])	RGB	35.5
I3D-NL [25]	RGB	37.5
STRG [26]	RGB	39.7
LFB [27]	RGB	42.5
SlowFast [6]	RGB+RGB	45.2
Two-stream (2+1)D ResNet	RGB+Flow	46.5
AssembleNet	RGB+Flow	51.6

State-of-the-art accuracy

Ryoo *et al.*, 2019. AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures. <u>arxiv.org/abs/1905.13209</u>

Search

Translation: WMT

256 input words + 256 output words So, et al. The Evolved Transformer, 2019, arxiv.org/abs/1901.11117

Architecture Decisions

Platform-aware search

Tan *et al.*, MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019 arxiv.org/abs/1807.11626

Platform-aware search

Google

Tan *et al.*, MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019 <u>arxiv.org/abs/1807.11626</u>

Collaboration between Waymo and Google Brain:

- 20–30% lower latency / same quality.
- 8–10% lower error rate / same latency.

https://medium.com/waymo/automl-automating-the-design-of-machine-learning-models-for-autonomous-driving-141a5583ec2a Google

'Interesting' architectures:

ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html

Tabular Data

Better than % of Kaggle Players

Internal Benchmark on Kaggle Competitions

	Wii # C	nners Congrats			alti	kagg	le days
#	∆pub	Team Name	Kernel	Team Members	Score @	Entries	Last
1	▲ 30	Erkut & Mark			0.61691	12	17m
2	~ 1	Google AutoML		۲	0.61598	8	44m
3	* 2	Sweet Deal		. A	0.61576	20	26m
4	~ 11	Arno Candel @ H2O.ai		(9)	0.61549	17	16m
5	*1	ALDAPOP		<u> 1 🕹 🚵</u>	0.61504	11	15m
6	~ 12	9hr Overfitness		1	0.61437	17	15m
				L	001	j ka	ggle

AutoML placed **2nd** in a <u>live one-day</u> <u>competition</u> against **76 teams**

Problems of NAS

- Enormous compute consumption
 - Requires ~10k training trials to coverage on a carefully designed search space
 - Not applicable if single trial's computation is heavy
- Works inefficiently on arbitrary and giant search space
 - Feature selection (search space 2^100 if there are 100 features)
 - Per feature transform (search space c^100 if there are 100 features and each has c types of transform)
 - Embedding and hidden layer size

Efficient NAS: Addressing the efficiency

Google

Key idea:

- 1. One path inside a big model is a child model
- 2. Controller selects a path inside a big model and train for a few steps
- Controller selects another path inside a big model and train for a few steps, reusing the weights produced by the previous step
- 4. Etc.

Results: Can save 100->1000x compute

Related works: DARTS, SMASH, One-shot architecture search,

Pham et al, 2018. Efficient Neural Architecture Search via Parameter Sharing, <u>arxiv.org/abs/1802.03268</u>

Learn the Activation Function

$$f(x) = x \cdot \text{sigmoid}(x)$$

Summary:

- Found by search over many possible equations of the form f(g(x), h(x)) where f, g, h are selected from predefined functions
- 2. Gives consistent improvements over ReLUs on many architectures we've tried
- 3. Now used in MobileNetv3 and EfficientNets

Previously discovered manually by Elfwing *et al.*, and called SiL

Ramachandran *et al.*, Searching for Activation Functions. ICLR Workshop, 2018, <u>arxiv.org/abs/1710.05941</u>

Learning Data Augmentation Procedures

Data Augmentation

Enlarge your Dataset

Status of Neural Architecture Search

- Much research has gone into changing architectures
- Changing modeling comes at the cost of adding slowness/complexity
- Data Augmentation is less studied
 - **Harder to design** good augmentation policies (?)
 - May not be as generalizable as model architectures (?)

AutoAugment Search Algorithm

Controller: proposes augmentation policy

Train & evaluate models with the **augmentation policy**

Google

Cubuk et al, 2018. AutoAugment: Learning Augmentation Policies from Data, <u>arxiv.org/abs/1805.09501</u>

AutoAugment: Example Learned Policy

AutoAugment Learns: (Operation, Probability, Magnitude)

AutoAugment: Example Learned Policy

For each Sub-Policy (5 Sub-Policies = Policy): AutoAugment Learns: (Operation, Probability, Magnitude)

AutoAugment CIFAR Results

Full CIFAR-10

Model	No data aug	Standard data-aug	AutoAugment
Wide-ResNet-28-10	3.87	3.08	2.68

AutoAugment CIFAR Results

Full CIFAR-10

Model	No data aug	Standard data-aug	AutoAugment
Wide-ResNet-28-10	3.87	3.08	2.68
Shake-Shake (26 2x32d)	3.55	3.02	2.47
Shake-Shake (26 2x96d)	2.86	2.56	1.99
Shake-Shake (26 2x112d)	2.82	2.57	1.89
AmoebaNet-B (6,128)	2.98	2.13	1.75
PyramidNet+ShakeDrop	2.67	2.31	1.48

State-of-the-art accuracy

AutoAugment CIFAR Results

Full CIFAR-10

Model	No data aug	Standard data-aug	AutoAugment
Wide-ResNet-28-10	3.87	3.08	2.68
Shake-Shake (26 2x32d)	3.55	3.02	2.47
Shake-Shake (26 2x96d)	2.86	2.56	1.99
Shake-Shake (26 2x112d)	2.82	2.57	1.89
AmoebaNet-B (6,128)	2.98	2.13	1.75
PyramidNet+ShakeDrop	2.67	2.31	1.48
	CIFAR-	-100 St	tate-of-the-art accuracy
Model	No data aug	Standard data-aug	AutoAugment
Wide-ResNet-28-10	18.80	18.41	17.09
Shake-Shake (26 2x96d)	17.05	16.00	14.28
DynamidNat ShalzaDran	12.00	12 10	10.67

AutoAugment ImageNet Results (Top5 error rate)

Model	No data augmentation	Standard data augmentation	AutoAugment
ResNet-50	7.80	6.92	6.18
ResNet-200		5.85	4.99
AmoebaNet-B		3.97	3.78
AmoebaNet-C		3.90	3.52

Code is opensourced:

https://github.com/tensorflow/models/tree/master/research/autoaugment https://github.com/tensorflow/tpu/tree/master/models/official/resnet

AutoAugment is additive w/ other Augmentation Methods

• AutoAugment works very well and is **additive** with other data augmentation methods

	B0	B 1	B2	B3	B4	B5	B6	B7
Inception Pre-process [25]	76.8	78.8	79.8	81.0	82.6	83.2	83.7	84.0
+ AutoAugment [1]	+0.5	+0.4	+0.5	+0.7	+0.4	+0.5	+0.5	+0.5
+ AdvProp	+0.3	+0.3	+0.2	+0.4	+0.3	+0.8	+0.9	+0.9
+ Both	+0.3	+0.4	+0.5	+0.8	+0.7	+1.1	+1.1	+1.2

Adversarial Examples Improve Image Recognition by Xie et al. <u>arxiv.org/abs/1911.09665</u>

AutoAugment Improves Robustness

• AutoAugment improves on all, but one corruptions on the common corruption benchmark dataset on CIFAR.

A Fourier Perspective on Model Robustness in Computer Vision by Yin et al. <u>arxiv.org/abs/1906.08988</u>

AutoAugment Improves Robustness

• AutoAugment improves on all, but one corruptions on the common corruption benchmark dataset on CIFAR.

				noise	e			blur			v	veath	er		digita	al	
model	acc	mCE	speckle	shot	impulse	defocus	Gauss	glass	motion	zoom	snow	fog	bright	contrast	elastic	pixel	jpeg
natural	77	100	70	68	54	85	73	57	81	80	85	90	95	82	86	73	80
Gauss	83	98	92	92	83	84	79	80	77	82	88	72	92	57	84	90	91
adversarial	81	108	82	83	69	84	82	80	80	83	83	73	87	77	82	85	85
Auto	86	64	81	78	86	92	88	76	85	90	89	95	96	95	87	71	81

A Fourier Perspective on Model Robustness in Computer Vision by Yin et al. arxiv.org/abs/1906.08988

Expanded AutoAugment for Object Detection

Zoph et al. 2019, Learning Data Augmentation Strategies for Object Detection, <u>arxiv.org/abs/1906.11172</u>

Learned Augmentation on COCO Results

ResNet-50 Model			SOTA
	Method	mAP	Regularization
	baseline	36.7	Method
	baseline + DropBlock [13]	38.4	
	Augmentation policy with color operations	37.5	
	+ geometric operations	38.6	
	+ bbox-only operations	39.0	

Learned Augmentation on COCO Results

		SOTA
Method	mAP	Regularization
baseline	36.7	Method
baseline + DropBlock [13]	38.4	
Augmentation policy with color operations	37.5	
+ geometric operations	38.6	
+ bbox-only operations	39.0	
	Method baseline baseline + DropBlock [13] Augmentation policy with color operations + geometric operations + bbox-only operations	MethodmAPbaseline36.7baseline + DropBlock [13]38.4Augmentation policy with color operations37.5+ geometric operations38.6+ bbox-only operations39.0

Backbone	Baseline	Our result	Difference
ResNet-50	36.7	39.0	+2.3
ResNet-101	38.8	40.4	+1.6
ResNet-200	39.9	42.1	+2.2

Learned Augmentation on COCO Results

-	Backbone	Baseline	Our result	Difference
12.1	ResNet-50	36.7	39.0	+2.3
TZ. 1	ResNet-101	38.8	40.4	+1.6
+1.1	ResNet-200	39.9	42.1	+2.2

Modeling gains of +2.1 going from ResNet-50 to ResNet 101 Modeling gains of +1.1 going from ResNet-101 to ResNet 200 Augmentation achieves better result w/ no additional computation complexity

Learn Augmentation on COCO Results

Architecture	Change	# Scales	mAP	mAP _s	$mAP_{\tt M}$	$mAP_{\rm L}$
MegDet [32]		multiple	50.5	-	-	-
	baseline [14]	1	47.0	30.6	50.9	61.3
AmoebaNet + NAS-FPN	+ learned augmentation	1	48.6	32.0	53.4	62.7
	+ \uparrow anchors, \uparrow image size	1	50.7	34.2	55.5	64.5
State-of-the-art accuracy at the time for a single model						y at the lel

Code is opensourced:

https://github.com/tensorflow/tpu/tree/master/models/official/detection

AutoAugment helps in the Point Cloud Domain

Figure 1: Classification accuracy (%) on ModelNet40 with or without training the networks with our PointAugment.

PointAugment: an AutoAugmentation Framework for Point Cloud Classification arxiv.org/abs/2002.10876

Magnitude: 9

Faster AutoAugment w/ vastly reduced search space!

Only two tunable parameters now: <u>Magnitude</u> and <u>Policy Length</u>

Original

Original

ShearX

AutoContrast

AutoContrast

ShearX Magnitude: 28

Cubuk et al. 2019, RandAugment: Practical data augmentation with no separate search, arxiv.org/abs/1909.13719

		baseline	PBA	Fast AA	AA	RA
Compare RandAugment	CIFAR-10 Wide-ResNet-28-2	94.9	-	-	95.9	95.8
vs AutoAugment + variants						

Match or
surpass AA with
significantly less
cost!

	baseline	PBA	Fast AA	AA	RA
CIFAR-10					
Wide-ResNet-28-2	94.9	-	-	95.9	95.8
Wide-ResNet-28-10	96.1	97.4	97.3	97.4	97.3
Shake-Shake	97.1	98.0	98.0	98.0	98.0
PyramidNet	97.3	98.5	98.3	98.5	98.5
CIFAR-100					
Wide-ResNet-28-2	75.4	-	-	78.5	78.3
Wide-ResNet-28-10	81.2	83.3	82.7	82.9	83.3
SVHN (core set)					
Wide-ResNet-28-2	96.7	-	-	98.0	98.3
Wide-ResNet-28-10	96.9	-	-	98.1	98.3
SVHN					
Wide-ResNet-28-2	98.2	-	-	98.7	98.7
Wide-ResNet-28-10	98.5	98.9	98.8	98.9	99.0
	1				

	baseline	Fast AA	AA	RA
ResNet-50	76.3 / 93.1	77.6 / 93.7	77.6 / 93.8	77.6 / 93.8
EfficientNet-B5	83.2 / 96.7	-	83.3 / 96.7	83.9 / 96.8
EfficientNet-B7	84.0 / 96.9	-	84.4 / 97.1	85.0 / 97.2

Can easily scale regularization strength when model size changes!

State-of-the-art accuracy

Code and Models Opensourced:

<u>https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet</u> <u>https://github.com/tensorflow/tpu/tree/master/models/official/resnet</u>

Learned Augmentation Policies Useful for SSL

- Learned augmentation methods are crucial for SOTA semi-supervised learning
 - FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence by Sohn et al.
 - Self-training with Noisy Student improves ImageNet classification by Xie et al.
 - Unsupervised Data Augmentation for Consistency Training by Xie et al.
 - ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring

Learned Augmentation Summary

- Focus on changing augmentation in addition to modeling
 - See large if not larger gains than changing the modeling with no incurred computational cost
- Applying learned augmentation to models not only improves accuracy but also robustness
- Learned augmentations found on one dataset/model typically transfer well to others
- Learned augmentation methods are crucial for SOTA semi-supervised learning
 - Current SOTA for ImageNet heavily uses of RandAugment